skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Airola, Michael V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a noncanonical protein serine/threonine phosphatase that has a conserved role in regulating ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with the development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of NEP1R1 generates identical phenotypes to reported loss of CTDNEP1 in mammalian cells, establishing CTDNEP1–NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high-resolution crystal structures of the CTDNEP1–NEP1R1 complex bound to a peptide sequence acting as a pseudosubstrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue in CTDNEP1 that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1. 
    more » « less
  2. Thibault, Guillaume (Ed.)
    Lipin 1 is an ER enzyme that produces diacylglycerol, the lipid intermediate that feeds into the synthesis of glycerophospholipids for membrane expansion or triacylglycerol for storage into lipid droplets. CTD-Nuclear Envelope Phosphatase 1 (CTDNEP1) regulates lipin 1 to restrict ER membrane synthesis, but a role for CTDNEP1 in lipid storage in mammalian cells is not known. Furthermore, how NEP1R1, the regulatory subunit of CTDNEP1, contributes to these functions in mammalian cells is not fully understood. Here, we show that CTDNEP1 is reliant on NEP1R1 for its stability and function in limiting ER expansion. CTDNEP1 contains an amphipathic helix at its N-terminus that targets to the ER, nuclear envelope and lipid droplets. We identify key residues at the binding interface of CTDNEP1 and NEP1R1 and show that they facilitate complex formation in vivo and in vitro. We demonstrate that NEP1R1 binding to CTDNEP1 shields CTDNEP1 from proteasomal degradation to regulate lipin 1 and restrict ER size. Unexpectedly, NEP1R1 was not required for CTDNEP1’s role in restricting lipid droplet biogenesis. Thus, the reliance of CTDNEP1 function on NEP1R1 depends on cellular demands for membrane production versus lipid storage. Together, our work provides a framework into understanding how the ER regulates lipid synthesis under different metabolic conditions. 
    more » « less
  3. Abstract Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding. 
    more » « less